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Summary 
In a mid-continent gas field, reservoir sands range in 
thickness from 5ft to 80ft and in porosity from about 6% to 
20%. Well logs, core data and 3D seismic data were 
combined in a reservoir characterization study with the 
objective of mapping the variability of porosity within the 
target sands to identify zones of greater sand thickness.  
The project was conducted in two phases, a feasibility 
study and a reservoir characterization study using the full 
3D seismic volume. The resulting classified volume 
accurately predicted the lithology distribution, porosity 
variability and sand thickness. 
 
Introduction 
In many cases poststack seismic data are the only available 
source of information on inter-well stratigraphy and 
lithology, but the amount of information that can be 
extracted on reservoir properties such as porosity or 
hydrocarbon content is usually quite limited.  This project 
had core, well log, and fully processed 3-D poststack 
seismic data available.  To extract the most knowledge 
about rock and fluid properties from these data, a method 
was developed that combined rock physics, seismic 
modeling, neural networks and seismic attributes in a 
unique way. 
 
The geologic setting for this study was a mid-continent 
fluvial system. The seismic survey covering the area of 
interest was about 20 square km. Log curves from 6 wells 
which had encountered gas saturated pay sands were used.  
 
Objective of Feasibility Study 
The goal of the feasibility study was to determine the 
sensitivity of seismic attributes to changes in rock porosity. 
This involved 1) the production of “pseudo” well logs by 
adjusting compressional (Vp) and shear wave (Vs) 
velocities and density values as predicted from changes in 
porosity, 2) generating synthetic seismograms and 3) 
studying the sensitivity of seismic attributes to the modeled 
lithological changes. The result of the feasibility study was 
a validation of the proposed reservoir characterization 
technique for this specific reservoir. 
 
Input Data Set 
 
Well Logs 
A reasonably comprehensive suite of log curves, excluding 
shear wave data, was available for each of the six wells 
shown in Figure 1.0.  A dipole shear wave velocity log 

from a well adjacent to the study area was used to calibrate 
the Vs prediction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Hybrid depositional indicator attribute 
detailing well locations. 
 
A core analysis report for about 100ft of the reservoir 
interval from one of the wells was also used. The porosity 
estimate from the density log, and the volume of clay 
predicted from SP and Gamma Ray logs showed good 
agreement with values from the core data. Similar log 
analyses were performed for the other wells and used to 
determine the ranges of thickness and porosity to be 
modeled. 
 
Seismic Data 
A 3D survey of good quality with a broad frequency 
bandwidth and a central frequency of about 50Hz covers 
the field. A wavelet extracted from the data was used to 
generate the synthetic seismograms.. 
 
Petrophysics 
 
Shear Wave Velocity Estimation 
In order to model the offset-dependent seismic reflectivity, 
a shear wave velocity (Vs) curve for each well is required. 
When this information is not available, it can be estimated 
from other log curves in a number of ways. To evaluate the 
relative success of each method,  the predicted Vs was 
compared to the measured Vs in a nearby well. The Krief 
method of Vs prediction was selected because it is 
generally well suited to consolidated formations and is less 
affected by very low porosity than most other methods. 
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Property Changes with Porosity 
The velocity-porosity models were refined by closely 
matching the model predictions to the data from one of the 
wells.  In a Critical Porosity model, the only adjustable 
parameter is the value of critical porosity itself.  The 
published value is 37%.  For this study, it was determined 
that the real value ranged from about 28% to 46% 
depending on the rock type.  Another variable that can be 
changed, depending on which well is used, is the average 
mineralogy of the pay zone.  By comparing the well log 
data to the predictions, the parameters used in the modeling 
can be optimized. In this case, a critical porosity  = 32%, 
average quartz = 88%, average clay = 7%, and average 
calcite = 5% were used.  Plots of the predicted velocity, 
density, and Poisson’s ratio versus porosity are shown in 
Figure 2.  
   

 
Figure 2. Cross plots of predicted density (L) and 
velocity (R) versus porosity 
 
In the velocity/porosity crossplot of Figure 2, the red points 
represent Vp values from one of the project wells between 
6800ft and 7200ft, the green points are estimated Vs values 
as described above and the blue and yellow points represent 
predicted Vp and Vs respectively used in the modeling.  
Variations of the data points from the predicted curve are 
due to the changes in water saturation and clay content over 
the depth range plotted.  The figure on the right confirmed 
the selection of the Critical Porosity model and helped to 
choose the appropriate value of 28% for PhiC. 
 
Modeling and Synthetics 
Modeled porosities ranged from 5% to  25% in increments 
of 5% and modeled thicknesses ranged from 20ft to 100ft 
in increments of 20ft. This generated a 5 by 5 matrix 
representative of sand conditions in the area. The upper 
sand in the cored portion of one of the wells was the 
starting point for the model. The reference well 
encountered 30ft of sand, with the top 10ft being tight and 
the remainder having gas saturation of about 80%. 
 

Offset and stacked synthetics were generated using 16 
offsets ranging from 0 to 7040ft; a range representative of 
the seismic data. Ray tracing was performed over the 
interval from 6750 to 7200ft. A representative display of 
these synthetics is depicted in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Stack (L) and gather synthetic (R) for 60ft 
sand at 15% porosity. 
 
Attributes 
A suite of 11 poststack and 2 prestack attributes were 
computed from the synthetics and these attributes were 
rigorously examined to determine those with the highest 
degree of sensitivity to the rock physics modeling. The list 
of computed attributes is shown in Table 1 below.  
 

Input 
Envelope 
First Derivative of Envelope 
Second Derivative of Envelope 
Instantaneous Phase 
Instantaneous Frequency 
Thin Bed Indicator 
Acceleration of Phase 
Dominant Frequency 
Bandwidth 
Instantaneous Q 
Relative Acoustic Impedance 
Gradient 
Gradient*Intercept 

 
Table 1. Computed attributes 
 
Relating Seismic Attributes to Rock and Fluid 
Properties 
There are a number of approaches that combine well log- 
derived information and seismic attributes for the purpose 
of predicting rock properties. The technique used for this 
study is a proprietary artificial neural network, and is an 
adaptation of the Rummelhart method that employs the 
delta rule with back-propagation of errors. 
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Based on analysis, six lithology classes were modeled: 
shale, carbonate and sands with 5%, 10%, 15% and 20% 
porosity. The subset of attributes that were the most 
diagnostically sensitive to the rock physics modeling was 
quantitatively determined in order to train the artificial 
neural network to predict the lithology and porosity classes 
at each well. The attributes listed in Table 2 were selected 
for the training. 
  

Envelope 
First Derivative of Envelope 
Second Derivative of Envelope 
Instantaneous Phase 
Instantaneous Frequency 
Thin Bed Indicator 
Relative Acoustic Impedance 

 
Table 2. Diagnostic attributes 
 
The iterative training process was performed until the 
neural network developed a set of weights and scalars that 
minimized the discrepancies between the predicted results 
and the actual classes. At that point, the network was 
considered to have achieved an acceptable level of 
convergence and to be well trained. 
 
The initial classification for lithology and porosity 
produced extremely encouraging results and a second 
classification was generated for thickness. In this case, the 
modeling was limited to four classes: shale, carbonate, thin 
sands (ca. 25ft.) and thick sands (ca. 65ft.) 
 
Inter-well Classification  
Separate lithology/porosity and thickness classifications 
were performed on a sample-by-sample basis on attributes 
computed from the entire 3-D seismic volume using the 
derived neural weights and scalars as described above. A 
flattened time-slice through the volume classified for 
porosity-thickness is shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Flattened time-slice through volume classified 
for porosity-thickness (phi-h). 
  

Conclusions 
An artificial neural network trained only by poststack 
seismic attributes was able to classify a seismic data 
volume for lithology, porosity and thickness within the 
targeted sands with an acceptable degree of confidence. 
 
Recommendations for Future Work  
Reservoir classification using logs, seismic attributes and 
neural networks is a powerful technique.  However, 
significant improvements can be made with additional 
work in the following areas: 
 
Incorporation of additional classes of attributes, e.g. energy 
absorption, acoustic and elastic impedance, AVO; re-
examination of  log analyses using available core data 
(porosity, permeability, capillary pressure, resistivity, etc.); 
exploration of  different well log classification methods, 
e.g., reservoir quality index. 
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